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Spline-Kernelled Chirplet Transform for the Analysis
of Signals With Time-Varying Frequency

and Its Application
Y. Yang, Z. K. Peng, G. Meng, and W. M. Zhang

Abstract—The conventional time–frequency analysis (TFA)
methods, including continuous wavelet transform, short-time
Fourier transform, and Wigner–Ville distribution, have played
important roles in analyzing nonstationary signals. However, they
often show less capability in dealing with nonstationary signals
with time-varying frequency due to the bad energy concentration
in the time–frequency plane. On the other hand, by introducing an
extra transform kernel that matches the instantaneous frequency
of the signal, parameterized TFA methods show powerful ability
in characterizing time–frequency patterns of nonstationary signals
with time-varying frequency. In this paper, a novel time–frequency
transform, called spline-kernelled chirplet transform (SCT), is
proposed. By introducing a frequency-rotate operator and a
frequency-shift operator constructed with spline kernel func-
tion, the SCT is particularly powerful for the strongly nonlinear
frequency-modulated signals. In addition, an effective algorithm
is developed to estimate the parameters of transform kernel in
the SCT. The capabilities of the SCT and parameter estimation
algorithm are validated by their applications for numerical signals
and a set of vibration signal collected from a rotor test rig.

Index Terms—Chirplet transform (CT), instantaneous
frequency (IF), spline-kernelled chirplet transform (SCT),
time–frequency representation (TFR).

I. INTRODUCTION

INSTANTANEOUS FREQUENCY (IF) [1], [2], as an in-
formative time–frequency characteristic of a signal, plays

an important role in nonstationary signal analysis. Estimation
of the IF is desirable in the fields of rotary machine [3]–
[8], power system [9], [10], electronic system [11], speech
[12], wind turbine [13], transportation system [14], and others,
where the IFs are often used to characterize important physical
parameters of the signals. To estimate the IF, time–frequency
analysis (TFA) methods [15], [16] are often applied, and the es-
timation accuracy usually depends on the energy concentration
of the time–frequency representation (TFR) produced by TFA
methods.
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Among a number of TFA methods, short-time Fourier trans-
form (STFT) [17]–[19], wavelet transform (WT) [10], [20], and
Wigner–Ville distribution (WVD) [3], [5], [5] have been widely
used; they are nonparameterized methods [21]. For the STFT
method, the signal is assumed to be piecewise stationary at the
scale of the window width as the STFT relies on traditional
Fourier transform, and therefore, the STFT cannot produce
an accurate estimation for time-varying IFs. Essentially, the
WT is a kind of STFT method with adjustable window size,
using large window for low-frequency components and small
window for high-frequency components. Thus, it is no wonder
that the WT cannot achieve an accurate estimation for time-
varying IFs as well [22]. The WVD can present excellent TFR
for signals in terms of energy concentration, but its bilinear
structure creates the redundant cross terms that do not indicate
the true time–frequency structure of the signal, which leads to
inaccurate estimation of IFs.

In order to capture the accurate time–frequency pattern
of chirplike signal, chirplet transform (CT), a parameterized
time–frequency transform, has been developed, and now, it has
been often used in the analysis of linear-frequency-modulated
(LFM) signals [23], [24]. Compared with STFT, CT possesses
an extra chirp kernel, which is characterized by a chirping
rate parameter. With the transform kernel, the time–frequency
atoms of the CT can be shifted and sheared to suit the sig-
nal. Nonetheless, the CT fails to characterize the underly-
ing time–frequency pattern of nonlinear-frequency-modulated
(NLFM) signals as it is impossible for the chirp kernel to match
the nonlinear IF of NLFM signal. To overcome the shortcoming
of the CT, Chassande-Mottin and Pai [25] developed a gen-
eral chirplet chain (CC) method to analyze gravitational wave
signals with nonlinearly time-varying IFs. By maximizing an
optimal statistics, the method is used to find the best CC whose
IF is essentially a piecewise linear approximation of the IF to be
detected. Mihovilovic and Bracewell [26] proposed an adaptive
CT to improve the TFR so as to estimate IF for NLFM signals.
With a frequency drift rate, this method is able to adjust the
tilt angle of time–frequency atom to match the NLFM signals
in the time–frequency plane. The local frequency drift rate can
be estimated by the slope of the line which approximates the
energy ridge locally in the TFR. Cui and Wong [27] proposed
another adaptive CT based on matching pursuit method and
applied it to characterize the time-dependent behavior of the
visual evoked potential from its initial transient portion to the
steady-state portion. In their study, the signal is assumed to
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be a sum of a series of weighted chirplets and residue, and
the method iteratively projects the residue of the signal into
a predefined chirplet dictionary. The best-matched chirplets
can be determined by maximizing a similarity degree. In the
essence, the aims of these “adaptive” CTs are to find the best-fit
straight lines with arbitrary slopes to approximate the signal’s
energy ridge locally in the time–frequency plane. However, it
is obvious that the broken line is neither very smooth nor very
accurate approximation for highly nonlinear curve. Moreover,
the boundary effect of decomposed chirplets in the TFR can
mislead the identification and extraction of the IF.

In this paper, a novel time–frequency transform, named as
spline-kernelled CT (SCT), is proposed based on the conven-
tional CT. By implementing a frequency-rotate operator and
a frequency-shift operator constructed with spline kernel, it is
able to characterize the underlying time–frequency pattern of
the signal with nonlinearly time-varying IF as it can be well
approximated by a spline function. Moreover, the parameters
of the spline kernel of the SCT can be estimated through the
spline approximation. Therefore, the SCT is able to produce
a TFR with an excellent energy concentration for signal with
nonlinearly time-varying IF so as to facilitate the accurate
IF estimation. The rest of this paper is organized as follows.
Section II briefly introduces the conventional CT, the spline
function, and the underlying principle of the SCT. In Section III,
the parameter estimation algorithm for the SCT is presented.
A signal contaminated by the noise is used to demonstrate the
effectiveness of the proposed algorithm. Section IV evaluates
the proposed SCT algorithm on several numerical examples and
a set of signals collected from a rotor test rig. The conclusions
are drawn in Section V.

II. SCT

In this section, the detail of the SCT is described after a brief
introduction of the CT and the spline function.

A. CT

CT is basically the inner product of the signal to be analyzed
and a family of analysis windows. For a frequency-modulated
signal s(t) ∈ L2(R), its CT at τ is defined as [28]

CT (τ, ω, α;σ) =

+∞∫
−∞

z(t) exp
[
−j α

2
(t− τ)2

]
wσ(t− τ)

× exp(−jωt)dt (1)

where τ and α ∈ R stand for time and chirping rate, respec-
tively. z(t) is the analytical signal of s(t), calculated by a
Hilbert transform [29] H , i.e., z(t) = s(t) + jH[s(t)]. Since
the Hilbert transform is only very effective for the high sam-
pling rate [30], the sampling rate should be set appropriately
in order to obtain the correct analytical signal. wσ(t) is a
nonnegative, symmetric, and normalized real window, which is
often taken as the Gaussian window function defined as

wσ(t) =
1√
2πσ

exp

(
−1

2

(
t

σ

)2
)
. (2)

According to definition (1), the CT of a signal is equivalent
to the STFT of its analytical signal multiplied by the complex
window ψ(t, α). The CT can also be rewritten as

CT (τ, ω, α;σ) = A

∞∫
−∞

z̄(t)wσ(t− τ) exp(−jωt)dt (3)

with

z̄(t) = z(t)ΦR(t, α)ΦS(t, τ, α)

ΦR(t, α) = exp(−jαt2/2)

ΦS(t, τ, α) = exp(jατt)

A(τ, α) = exp(−jτ2α/2)

where A(τ, α) is a complex value with modulus |A(τ, α)| = 1.
In the time–frequency analysis, it is the modulus of the TFR,
|CT (τ, ω, α;σ)|, that is usually of interests and meaningful, so
the CT can be simplified as

CT (τ, ω, α;σ) =

∞∫
−∞

z̄(t)wσ(t− τ) exp(−jωt)dt (4)

where ΦR(t, α) and ΦS(t, τ, α) are named as the frequency-
rotate operator and the frequency-shift operator, respectively.
To elaborate the functionality of these two operators, an LFM
signal is considered, i.e.,

s(t) = sin(2πω0t+ πλt2). (5)

The IF of the signal is Ω(t) = ω0 + λt, where λ is the slope
of the IF trajectory and ω0 is the initial frequency. In the
CT of s(t), ΦR(t, α) rotates the analytical signal z(t) by an
angle arctan(−α) in the time–frequency plane. If the chirping
rate α equals λ, then the frequency of the analytical signal is
equivalent to ω0 all the time, and then, ΦS(t, τ, α) relocates the
frequency component of the signal at time τ with an increment
of ατ . It is noticed that the frequency of z(t) at time τ after
CT would be equal Ω(τ) when α = λ. Therefore, the CT can
be essentially decomposed into a series of operations: First, the
signal is rotated by a degree arctan(−α) in the time–frequency
plane. Second, it is shifted by a frequency increment of ατ in
the time–frequency plane. Next, it is processed by the STFT
with the window wσ .

It is worth noticing that the frequency resolution of the CT
depends on the chirping rate α and the length of the Gaussian
window. Taking the signal denoted in (5) as an example, the
time–frequency atom adopted by the CT is of bandwidth of
σ|λ− α|+ 1/σ and duration of σ to divide the time–frequency
plane. When α = λ, the time–frequency atom has a minimum
bandwidth of 1/σ and a duration of σ, which is the same as
that of the Gaussian window. Obviously, the CT degrades to
STFT when α = 0. Given the proper chirping rate, the CT
can produce a TFR with an optimal energy concentration, and
|CT (τ, ω, α;σ)| achieves global maximum at (ω, α) = (ω0, λ).
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B. Spline Function

It seems reasonable for the adaptive CT to calculate the
approximation when the straight line can accurately fit the
IF in a properly determined interval. However, the obvious
disadvantage of the broken line approximation lies in its lack of
smoothness as well as its excessive computational load for in-
terval determination. According to Weierstrass approximation
theorem [31], polynomial is a better choice to provide smoother
and more efficient approximation to continuous function than
the broken lines. However, polynomial approximation is not
necessarily good. The Gram matrix would be ill-conditioned
in solving the least square approximation with a polynomial of
high order, which is worse as the order of polynomial increase.
Moreover, if a function is to be approximated on a larger
interval, the order of the approximating polynomial has to be
chosen unacceptably large. Thus, it will be difficult to compute
the least square polynomial when the Gram matrix is highly ill-
conditioned, which leads to inaccurate approximation for the
data to be matched.

Spline is known to be effective in approximating high dy-
namic shapes on a larger interval. It can be defined as a
piecewise polynomial function with boundary constraints at
jointed breaks. The broken line is the spline of order 2. On an
interval [a, b] with breaks a = t1 < · · · < tl+1 = b, a spline of
order n can be defined in piecewise polynomial form (ppform)
with l pieces as [33]

S(x) = Pi(x), for x ∈ (ti, ti+1) (6)

with Pi(x) =
∑n

k=1 p
i
k(x− ti)k−1 for i = 1, . . . , l where pi

k

denotes the local polynomial coefficients. Two consecutive
polynomials are required to share the same n− 2 derivatives
at the breaks to be jointed, i.e., P (d)

i (ti) = P
(d)
i+1(ti), where

0 ≤ d ≤ n− 2. In this paper, the breaks are uniformly placed
if there is no special instruction.

As stated in Section II-A, the frequency-rotate operator of
the CT is essentially an exponential function of the integral
of the linear function characterized by chirping rate. Accord-
ingly, the indefinite integral of the local polynomial defined in
(6) is derived as∫

Pi(x)dx =
n∑

k=1

pi
k

k
(x− ti)k + oi (7)

where oi is the integral constant of the local polynomial. The
ppform composed by (7) with boundary constraints can be a
spline of n+ 1 order. In order to hold the continuous n− 2
derivatives at the jointed breaks, the integral constant oi is
demanded to satisfy the constraint as follows:

oi − oi+1 =
n∑

k=1

pi+1
k

k
(ti − ti+1)k. (8)

Given the piecewise nature of spline, it is able to approximate
the discontinuous function by loosening the restrictions at the
specific breaks. For example, the function to be approximated
is discontinuous at ti, and the continuity requirements of the
approximated spline at this break are broken so that P (d)

i (ti) �=
P

(d)
i+1(ti). It is equivalent to divide a spline into two subspline

segments, and each one of them is a separate spline.

Fig. 1. Illustration of SCT principal. (Solid line) IF of signal. (Dashed line)
IF trajectory after rotation. (Dotted line) IF trajectory after rotation and shift.

C. SCT

In order to characterize the time–frequency patterns of sig-
nals with nonlinearly time-varying frequency, the SCT is pro-
posed. By replacing the kernel of the frequency-rotate operator
and frequency-shift operator in the conventional CT with a
spline kernel, the proposed SCT extends the capability of the
conventional CT and can be applied to a wider class of signals,
i.e., the NLFM signals whose IF trajectory can be approximated
by a spline function as in (9). The SCT of a signal is defined as

SCT (τ, ω,Q;σ) =

+∞∫
−∞

z(t)wσ(t− τ) exp(−jωt)dt

for τ ∈ (ti, ti+1) (9)

with

z̄(t) = z(t)ΦR(t,Q)ΦS(t, τ,Q)

ΦR(t,Q) = exp

(
−j

n∑
k=1

qi
k

k
(t− ti)k + γi

)

ΦS(t, τ,Q) = exp

(
j

n∑
k=1

qi
k(τ − ti)k−1t

)

where ΦR(t,Q) and ΦS(t, τ,Q) are frequency-rotate oper-
ator and frequency-shift operator, respectively; Q(i, k) = qi

k

denotes the local polynomial coefficient matrix of the spline
kernel; and γi is required to satisfy

γi − γi+1 =
n∑

k=1

qi+1
k

k
(ti − ti+1)k (10)

with γ1 = 0.
Specifically, the SCT includes three sequential operations:

1) the signal is rotated in the time–frequency plane by adding
the IF of ΦR(t,Q), i.e., ΩR(t) = −∑n

k=1 q
i
k(t− ti)k−1;

2) the signal is shifted in the time–frequency plane by adding
the frequency of ΦS(t, τ,Q) at τ , i.e., Ωs(τ) =

∑n
k=1 q

i
k(τ −

ti)k−1; and 3) the signal is processed by the STFT with
window wσ .

Fig. 1 shows the principal of the SCT, where Ω(t), Ω′(t),
and Ω(t) represent the true IF of the signal, the rotated IF,
and the eventual obtained IF of the signal by the SCT, re-
spectively. Denote the range of Ω(t) + ΩR(t) at the time span
[τ − σ/2, τ + σ/2] as ΔIFs(τ ;σ). The frequency resolution of
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the SCT is determined by both ΔIFs(τ ;σ) and the bandwidth
of the Gaussian function 1/σ, i.e., the frequency resolution at
τ equals ΔIFs(τ ;σ) + 1/σ. If qi

k is well selected to equal pi
k,

for all i and k, ΔIFs(τ ;σ) will become zero all over the time
span, and the frequency resolutions of the SCT at any moments
can reach the minimum 1/σ.

III. PARAMETER ESTIMATION METHOD

It is crucial to develop a parameter estimation method for the
SCT to facilitate the construction of the spline kernel function
that can approximate the IF of the signal in real applications.
Only with the appropriately determined parameters can SCT
attain a satisfactory TFR with an excellent concentration and
achieve the IF estimation with significant accuracy. The spline
approximation is introduced to estimate the parameters of the
transform kernel of the SCT. According to [33], any spline func-
tion of a given degree and smoothness can be represented as a
weighted sum of basic splines (b-splines). As another way to
represent a spline, B-form has become a standard representation
other than the ppform for its convenience of constructing and
shaping a function, which is defined as

S(x) =
m∑

j=1

cjBj,n(x) for a ≤ x ≤ b (11)

where m is the number of the b-splines and cj is the control
point. Bj,n denotes the jth b-spline of order n for a knot
sequence, i.e., v1 ≤ v2 . . . ≤ vm+n. It should be noted that the
knots are different from the aforementioned breaks in that they
are repeated. Simply, apart from the interior breaks, the knot
sequence should contain the two endpoints, a and b, of the
basic interval exactly n times. Thus, breaks can be the interior
breaks of knot sequence, which may be repeated depending
on the required constraints. In particular, Bj,n is nonnegative
piecewise polynomial with breaks vj , . . . , vj+n and is zero
outside the interval (vj , . . . , vj+n), which can be computed as

Bj,1(x)=
{ 1 if vj≤x<vj+1

0 otherwise
(12)

Bj,n(x)=
x− vj

vj+n−1−vj
Bj,n−1(x)+

vj+n−x
vj+n−vj+1

Bj+1,n−1(x).

(13)

To obtain a smoothing spline that can approximate a set of
noisy data (xi, yi)

N
1 for xi ∈ [a, b], it is required to minimize

∑
i

wi (yi − S(xi))
2 + λ

b∫
a

(
S(d)(v)

)2

dv (14)

with given positive weights wi and smoothing parameter λ.
Unser et al. [34], [35] provided an efficient solution to (14)
and obtained a matched spline in B-form. Since the ppform
and the B-form are essentially the different representations for
the same spline, the two forms can be converted to each other.
The B-form of the spline can be converted to its local power
form by applying Taylor expansion at the left beginning of
each nonzero knot span with the appropriate number of terms
depending on the required degree [36]. In addition, to determine
whether there are intermittent points or not, the Euclidean
distance between the successive data points, denoted by D(xi),

for i = 1 : N − 1, can be measured. As long as D(xo) > Δ,
in which Δ is the threshold, the intermittent point of (xo, yo)
is determined as an interior break. In this case, the constraint
at (xo, yo) needs to be loosened, and thus the spline kernel is
broken into separate segments.

An iterative procedure based on the TFR is proposed to esti-
mate the parameters from the unknown signal with nonlinearly
time-varying frequency. At first, the TFR is obtained by using
the SCT with initialized parameter matrix q(i, k) = qi

k = 0, for
all i and k, which makes SCT degrade to STFT. Since the
energy of a signal is mainly distributed around the IF of the
signal in the time–frequency plane, the IF can be estimated
through the time–frequency peak detection. The position of the
energy peak in the TFR is denoted as the estimated IF of the
considered signal

Ω̃(t) = arg max
ω

(|SCT (t, ω,Q;σ)|) . (15)

Second, a spline function is selected to approximate Ω̃(t) by
solving (14). Once the best fitted spline is calculated, a proper
frequency-rotate operator and frequency-shift operator of the
SCT can be constructed for the SCT. Next, using the estimated
parameters, the SCT generates an improved TFR with a better
energy concentration. This procedure keeps iterating until no
more evident modification is observed in the estimated IF, i.e.,

ζiter = mean

∫ ∣∣∣Ω̃iter+1(t)− Ω̃iter(t)
∣∣∣∣∣∣Ω̃iter(t)

∣∣∣ dt < δ (16)

where δ is a predetermined threshold and the
subscript denotes the index of the iteration. The
detail of the algorithm is described as follows.

Initialization:
Initialized parameter matrix, Q, number of spline pieces,

minor integer δ, window size, maximum iteration Lmax,
threshold Δ.

Output: parameters of the estimated IF
While iter < Lmax and ζiter < δ

1) Generating TFR for s(t) by using SCT with Q.
2) Extracting Ω̃iter(t) according to (15) in obtained TFR.
3) Calculating D(t) for Ω̃iter(t)
4) If D(to) > Δ, then

1) Finding subspline for each segment of Ω̃iter(t) by
solving (14);

2) Combining all the segments.
Else then
Finding a spline to approximate Ω̃iter(t) by solving

(14)
5) Obtaining new parameter matrix Q.
6) Updating Q with Q.
7) Calculating ζiter according to (16) and let iter ←

iter + 1

End
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Fig. 2. SCT-based TFR and estimated IF in the first iteration.

Fig. 3. SCT-based TFR and estimated IF in the second iteration.

Fig. 4. SCT-based TFR and estimated IF in the third iteration.

In order to demonstrate the proposed parameter estimation
method, an NLFM signal with piecewise IF denoted as follows
is considered:

Ω(t) =
{

30− 11t+ 1.2t2, 0 ≤ t < 5s
− 100

3 + 26.5t− 13
6 t

2, 5s ≤ t < 10s. (17)

A Gaussian noise with a standard deviation of 0.6 and a
mean of zero is artificially added to the signal. The SNR is
thus 1.5468 dB. The window size is chosen as 512. δ is 0.015,
and the sampling frequency is set to be 100 Hz. It takes six
iterations before reaching the termination condition. The TFRs
generated by the SCT and the estimated IFs in each iteration
are shown in Figs. 2–7, respectively. The blue line denotes
the estimated IF, and the red line denotes the approximated
polynomial. The TFR generated by the SCT with initialized
parameter q = 0 as illustrated in Fig. 2 is actually the result of

the STFT. The energy of the signal is scattered along both the
time and frequency axes, and it is unable to achieve an accurate
estimation of the IF. A spline that is modified at the breaking
point is used to approximate the estimated IF curve, as shown
in Fig. 2. With the estimated parameters, the SCT improves the
concentration of the TFR, and the extracted IF becomes closer
to the true IF of the signal as shown in Figs. 3–6. The best TFR
with a superior energy concentration and the precise estimation
of the IF are shown in Fig. 7. The criterion of the termination
condition is listed in Table I. In addition, in order to quantify the
accuracy of the estimated IF compared to the true IF, the relative
error is used to measure the difference between the estimated IF
and the true IF. The relative error is defined as

error = mean

⎛⎝∫
∣∣∣Ω̃iter(t)− Ω(t)

∣∣∣
|Ω(t)| dt

⎞⎠ . (18)
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Fig. 5. SCT-based TFR and estimated IF in the fourth iteration.

Fig. 6. SCT-based TFR and estimated IF in the fifth iteration.

Fig. 7. SCT-based TFR and estimated IF in the sixth iteration.

TABLE I
VALUE OF THE TERMINATION CONDITION

TABLE II
ERRORS OF THE ESTIMATED IF

Relative errors are listed in Table II, which clearly shows
that the estimated IF is closer to the true IF in the proposed
parameter estimation procedure.

IV. NUMERICAL STUDIES

In this section, three examples are used to demonstrate
the effectiveness of the proposed SCT method. The first two

examples are given in the form of S(t) = sin[2πϕ(t)], whose
IFs are given by

Ω(t)=
∂ϕ(t)
∂t

=
10(t−5)

1+(t−5)4
+10, (0≤ t≤10s) (19)

Ω(t)=
∂ϕ(t)
∂t

=10+2.5t+t2/3−t3/40, (0≤ t≤18s). (20)

Both of them are artificially added with additive Gaussian
noise with a standard deviation of 0.6 and a mean of zero. The
sampling frequency is set to be 100 Hz, and the window length
is 512. The TFR obtained by the proposed SCT is compared
with the TFRs obtained by conventional CT, continuous WT
(CWT), and WVD. The parameters of the SCT are estimated
using the proposed method presented in Section III.

The SNR of the first signal is 1.6482 dB. The TFRs generated
by the CT, CWT, WVD, and SCT are shown in Fig. 8. The
chirping rate of the CT is set to be 3.8 Hz/s. The TFR generated
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Fig. 8. TFR of the signal with IF in (20) by (a) CT, (b) CWT, (c) WVD, and (d) SCT.

TABLE III
PARAMETERS OF THE KERNEL OF THE SCT [FIG. 8(d)]

by the CT, shown in Fig. 8(a), can barely reveal the inherent
time–frequency pattern of the signal. To be specific, the TFR
only shows the clear IF trajectory over 0–10 s due to a good
approximation by a linear function with a changing rate of
3.8 Hz/s. However, the TFR after 10 s is too blur to reveal the IF
trajectory. In Fig. 8(b), it can be seen that the TFR generated by
the CWT scatters the energy around the IF at the high-frequency
region due to its coarse frequency resolution, and it is inaccurate
to estimate the IF. As shown in Fig. 8(c), it is also difficult
for the TFR generated by the WVD to differentiate the true IF
trajectory from the spurious frequency contents introduced by
the cross terms. On the other hand, as shown in Fig. 8(d), it
is evident that the SCT outperforms the CT, the WT, and the
WVD as it clearly reveals the true time–frequency pattern of
the signal. The estimated coefficients of the SCT are listed in
Table III.

The SNR of the second signal is 2.1159 dB. The TFRs
generated by the CT, CWT, WVD, and the SCT are shown
in Fig. 9. The chirping rate of the CT is set to be 9.5 Hz/s.
As shown in Fig. 9(a), it is difficult for the TFR generated
by the CT to identify the underlying time–frequency pattern
of the signal since it is inadequate for the CT to analyze the
NLFM signals. The TFR generated by the CWT, as shown in
Fig. 9(b), shows poor time or frequency resolution because of

the reciprocal relationship between the central frequency of the
wavelet function and its window length. As shown in Fig. 9(c),
the existence of spurious trajectories in the TFR obtained from
the cross terms of the WVD strongly interferes the recognition
of the true IF. However, in Fig. 9(d), the SCT provides the TFR
with an excellent concentration, based on which the IF can be
estimated precisely. The estimated coefficients of the SCT are
listed in Table IV.

All of the tests are implemented by MATLAB version 7.11.0
(R2010b) on a PC with AMD Athlon 64 X2 dual-core processor
4000 + 2.10 GHz and 1-GB RAM. The calculation times of the
CT, the CWT, the WVD, and the one iteration of SCT with
proper parameters for these two examples are listed in Table V.
It can be seen that the calculation time of the SCT in one
iteration is similar to that of the WVD in both cases, which
is much less than that of CWT but slight more than that of CT.

In addition, a set of vibration signals collected by ac-
celerometers on a rotor test rig during speed-up and shut-down
processes is considered. The speed-up and shut-down processes
of rotary machine usually contain valuable information related
to the machine health condition, which plays an important role
in machine condition monitoring. In this part, the SCT is used
to implement the TFA for a set of the vibration signal collected
during a speed-up and shut-down process. The test rig is shown
in Fig. 10.

Fig. 11 shows the collected vibration signal. The sampling
frequency is 100 Hz, and the window size is set to be 512.
The spline kernel of order 4 with 18 pieces is adopted in the
SCT. The termination condition in (16) is applied, and the
threshold is set to be δ = 0.1%. Three iterations have been
conducted before reaching the termination condition. Figs. 12
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Fig. 9. TFR of signal with IF in (19) by (a) CT, (b) CWT, (c) WVD, and (d) SCT.

TABLE IV
PARAMETERS OF THE KERNEL OF THE SCT [FIG. 9(d)]

TABLE V
COMPARISON OF THE TIME COST

Fig. 10. Rotor test rig.

Fig. 11. Set of vibration signal.

and 13 show the TFRs and the estimated instantaneous speed
obtained by the STFT and the SCT, respectively. It is clear that
the TFR shown in Fig. 13 has much better energy concentration
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Fig. 12. TFR generated by (a) the STFT and (b) the extracted ridge and the
estimated instantaneous rotating speed.

Fig. 13. TFR generated by (a) the SCT and (b) the extracted ridge and the
estimated instantaneous rotating speed.

TABLE VI
PARAMETERS OF TRANSFORM KERNEL OF THE SCT (FIG. 13)

for the fundamental frequency component than that of TFR
given in Fig. 12. This indicated that the SCT is able to achieve
more accurate estimation of the instantaneous speed of the
rotor undergoing the speed-up and shut-down processes than
the STFT. The instantaneous rotating speed is represented in
ppform, and the parameters of the transform kernel of the SCT
qi
k, for all i and k, are listed in Table VI.

It is worth noticing that the proposed SCT is focused on
monocomponent signals. For the multicomponent signals with
multiple-frequency components which need to be approximated
with different spline functions, the SCT is not applicable. It
is a common problem for parameterized time–frequency trans-
forms. Using the vibration signals collected from the rotor test

rig as an example, the energy at the frequency components
other than the fundamental frequency component in the TFR
generated by the SCT is more scattered than that of the TFR
generated by STFT. The authors are currently working on
extending the SCT to the signals containing multiple-frequency
components.

V. CONCLUSION

The conventional time–frequency transform methods can-
not characterize the accurate time–frequency patterns for the
signals with time-varying frequency due to the poor energy
concentration. A novel time–frequency transform has been
proposed to characterize the underlying time–frequency feature
of the signal with nonlinearly time-varying IF trajectory. With
the effective algorithm developed to estimate the parameters
of transform kernel of the SCT, its potential and effectiveness
are validated through analyzing several numerical simulation
signals and a set of experimental vibration signals. The compar-
ison results show that the SCT outperforms the STFT, the CWT,
the conventional CT, and the WVD in providing the TFR of
better energy concentration and achieving more accurate IF es-
timation for the signals with nonlinearly time-varying IF. Future
work will focus on extending the SCT from monocomponent
signal analysis to multicomponent signal analysis.
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